CLASSIFICATION OF CONFORMALLY INDECOMPOSABLE
INTEGRAL FLOWS ON SIGNED GRAPHS

BEIFANG CHEN AND JUE WANG

ABSTRACT. A conformally indecomposable flow f on a signed graph ¥ is a
nonzero integral flow that cannot be decomposed into f = f1 + f2, where
f1, f2 are nonzero integral flows having the same sign (both > 0 or both
< 0) at every edge. This paper is to classify at integer scale conformally
indecomposable flows into characteristic vectors of Eulerian cycle-trees — a
class of signed graphs having a kind of tree structure in which all cycles can be
viewed as vertices of a tree. Moreover, each conformally indecomposable flow
other than signed-graphic circuit flows can be further decomposed conformally
at half-integer scale into a sum of certain signed-graphic circuit flows. The
variety of conformally indecomposable flows of signed graphs is much richer
than that of ordinary unsigned graphs.

1. INTRODUCTION

A signed graph is an ordinary graph whose each edge is endowed with either a
positive sign or a negative sign. The system was formally introduced by Harary [10]
who characterized balanced signed graphs up to switching, and was much devel-
oped by Zaslavsky [15, 16] who successfully extended most important notions of
ordinary graphs to signed graphs, such as circuit, bond, orientation, incidence ma-
trix, Laplacian, and associated matroids, etc. Based on Zaslavsky’s work, Chen
and Wang [5] introduced flow and tension lattices of signed graphs and obtained
fundamental properties on flows and tensions, including a few characterizations of
cuts and bonds.

Now it is natural to ask, inside the flow and tension lattices, how integral flows
and tensions are built up from more basic integral flows and tensions. More specif-
ically, what does an integral flow or tension look like if it cannot be conformally
decomposed at integer scale but can be possibly conformally decomposed further
at fractional scale? The answer is not only interesting but fundamental in na-
ture because if one considers circuit flows to be at atomic level then conformally
indecomposable flows are at molecular level.

For ordinary graphs it is easy to see that conformally indecomposable flows
are simply the graphic circuit flows at integer scale. For signed graphs, how-
ever, we shall see that conformally indecomposable flows are much richer than
that of unsigned graphs because in addition to circuit flows, the fixed spin (signs
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on edges) produces a new class of characteristic vectors of so-called directed Fuler-
ian cycle-trees, which are not decomposable conformally at integer scale whereas
decomposable conformally (into signed-graphic circuit flows) at half-integer scale.
The present paper is to present a complete solution to such a new phenomenon
on signed graphs by an algorithmic method. The main result is also obtained by
Chen, Wang, and Zaslavsky [7] using a different approach — resolution into a double
covering graph.

Let ¥ = (V,E,0) be a signed graph throughout, where (V| F) is an ordinary
finite graph with possible loops and multiple edges, V is the vertex set, E is the
edge set, and o : F — {—1,1} is the sign function. Each edge subset F C E
induces a signed subgraph X(F) := (V(F), F,o|r), where V(F) is the set of end-
vertices of edges in F'. A cycle of ¥ is a simple closed path. The sign of a cycle is
the product of signs on its edges. A cycle is said to be balanced (unbalanced) if its
sign is positive (negative). A signed graph is said to be balanced if its all cycles are
balanced, and unbalanced if one of its cycles is unbalanced. A connected component
of ¥ is called a balanced (unbalanced) component if it is balanced (unbalanced) as
a signed subgraph.

An orientation of a signed graph ¥ is an assignment that each edge e is assigned
two arrows at its end-vertices u,v as follows: (i) if e is a positive edge, the two
arrows are in the same direction; (ii) if e is a negative edge, the two arrows are in
opposite directions; see Figure 1. We may think of an arrow on an edge e at its

e e e e
u=v u=v u=v u=v
e e e e
Uo—»T»—oV Uo—<—+<—oV Uo—<—_>—oV Uo—>—_<—.V

F1GURE 1. Orientations on loops and non-loop edges.

one end-vertex v as +1 if the arrow points toward v and —1 if the arrow points
away from v. Then there are both +1 and —1 for a positive loop at its unique end-
vertex, and two +1’s or two —1’s for a negative loop at its unique end-vertex. So an
orientation on ¥ can be considered as a multi-valued functione : VxE — {-1,0,1}
such that
(i) e(v,e) has two values +1 and —1 if e is a positive loop at its unique end-
vertex v, and is single-valued otherwise;
(ii) e(v,e) =0 if v is not an end-vertex of the edge e; and
(iii) e(u,e)e(v,e) = —o(e), e = uv.
A signed graph ¥ with an orientation ¢ is called an oriented signed graph (X, ¢€).
We assume that (X, ¢) is an oriented signed graph throughout the whole paper.
Let ¢; (i = 1,2) be orientations on signed subgraphs ¥; of X. The coupling of
€1,&9 is a function [e1, &3] : E — Z, defined for e = uv by

1 ifeeX; Ny, e1(v,e) =ea(v,e),
[e1,e2](e) = ¢ —1 ife€ XNy, e1(v,e) #ea(v,e), (L.1)
0 otherwise.

In other words, [e1,e2](e) = €1(v, €)ea(v, €) if e = uw.
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Let A be an abelian group and be assumed automatically a Z-module. For each
edge e and its end-vertices u, v, let End(e) denote the multiset {u,v}. Associated
with (X, ¢) is the boundary operator 0 : A¥ — AV defined by

@f)(w) =Y mycfle) = > e(w,e)f(e), (1.2)

eclk e€E,weEnd(e), w=v
for f € AF and v € V, where

e(v,e) if e is a non-loop,
my =< 2¢(v,e) if eis a negative loop, (1.3)
0 otherwise.

A function f : E — A is said to be a flow (or A-flow) of (X,¢) if (9f)(v) = 0.
The set of all A-flows forms an abelian group, called the flow group of (X,¢) with
values in A, denoted F(3,e; A). We call F(X,¢) := F(3,¢;R) the flow space, and
Z(%,e) := F(X,¢e;Z) the flow lattice of (3,e). The support of f is the edge subset

supp f = {e € B | f(e) #0}. (1.4)
For further information about flows of signed graphs, see [1, 4, 5, 6, 11]. For notions
of ordinary graphs, we refer to the books [2, 3, 9].

A flow is said to be nonzero if its support is nonempty. A nonzero integral flow
f is said to be conformally decomposable if f can be written as

f=fh+fe

where f1, fo are nonzero integral flows having the same sign (both nonnegative or
both nonpositive) at every edge, that is, fi(e)f2(e) > 0 for all e € E. Nonzero
integral flows that are not conformally decomposable are said to be conformally in-
decomposable. A nonzero integral flow f is said to be elementary if it is conformally
indecomposable and there is no nonzero integral flow g such that supp g is properly
contained in supp f. Compare with Tutte’s definition of elementary chains [13, 14].
Let W be a walk of length n in ¥ and be written as a vertex-edge sequence

W = upx1uiZs . . . Upy—1TnUn, (1.5)

where each z; is an edge with end-vertices u;_1,u;. The walk W is said to be closed
if the initial vertex ug is the same as the terminal vertex u,,. The sign of W is the
product

o(W) = Ha(mi). (1.6)
i=1
The support of W is the set supp W of edges z; (i = 1,...,n) without repetition.
We may think of W as a multiset
M(W) = {z1,22,..., %5} (1.7)
(with repetition allowed) of n edges on supp W.
A direction of W is a function ey with values either 1 or —1, defined for all
vertex-edge pairs (u;—1,;) and (u;, x;), such that
ew (wi—1, i)ew (ui, ;) = —o(x;),
ew (us, ;) + ew (us, zip1) = 0.
It follows that for each direction ey,

ew (Un, xn) = —o(W)ew (ug, 21). (1.8)
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Every walk has exactly two opposite directions. A walk W with a direction ey is
called a directed walk, denoted (W,ew ). If W is closed, its direction ey satisfies
ew (1o, 21) + ew (un, zn) = 0

at the initial and terminal vertex ug(= uy,) if and only if W has positive sign.
A directed walk (W,ew ) is said to be midway-back avoided, provided that if
Uq = ug With 0 < v < f < n in (1.5) then

ew (ug, 25) = ew (Ua, Tat1)- (1.9)

Figure 2 demonstrates four possible orientation patterns at a double vertex in a
directed midway-back avoided walk.

X, X,
N Uq( Xa+1 Xq Uu A Xa+1 N Uo( Kas1 Xa Uu Xo(+l
PRI PPERTAN 77U X, Xgo Us™ X
Xﬁ‘*l )({3 »x,"/ Xﬁ ’“(‘/ X{S+1

FIGURE 2. Orientation patterns at a double vertex.

An FEulerian walk is a closed positive walk whose direction has the same ori-
entation on repeated edges of each fixed edge. We shall see that a midway-back
avoided closed positive walk is necessarily a directed Eulerian walk and has no triple
vertices. An Eulerian walk with a direction is called a directed Eulerian walk.

An Eulerian walk W is said to be minimal if there is no Eulerian walk W'’ such
that W' is properly contained in W as edge multisets, and said to be elementary
if it is minimal and there is no Eulerian walk W' such that supp W' is properly
contained in supp W as edge subsets. A minimal Eulerian walk with a direction is
called a minimal directed Fulerian walk.

Let (W,ew) be a directed closed positive walk having W given by (1.5). The
characteristic vector of (W,ew) on (X,¢) is a function fw, ., : £ — Z defined by

Fwew@ = 3 leewl@). (1.10)

x, €W, x;,=x
By Lemma 2.1, fw,.,,) is an integral flow on (X,¢). Whenever ey =€ on W, we

simply write fow,<,,) as fw.
Given a real-valued function f on E. Let €5 be the orientation on X defined by

—e(u,x) if f(e) <0, z = uv,
er(u,z) = { sgu,xg othe(zrv)vise. (1.11)
It is trivial that f is a flow on (X,¢) if and only if the absolute value function |f|
is a flow on (X,ef). Moreover, |f| = [e,ef] - f.
A cycle-tree of 3 is a connected signed subgraph 7" which can be decomposed
into edge-disjoint cycles C; (called block cycles) and vertex-disjoint simple paths P;
(called block paths), denoted T' = {C;, P;}, satisfying the four conditions:

(i) {C;} is the collection of all cycles (simple closed paths) in T
(ii) The intersection of two cycles is either empty or a single vertex (called an
intersection vertez).
(iii) Each P; intersects exactly two cycles and the intersections are exactly the
initial and terminal vertices of P; (also called intersection vertices).
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(iv) Each intersection vertex is a cut-point (a vertex whose removal increases the
number of connected components of the underlying graph as a topological
space of 1-dimensional CW complex), also known as a separating vertex (3,
p.119].

A cycle-tree is said to be Eulerian if it further satisfies

(v) Parity Condition: Fach balanced cycle has even number of intersection ver-
tices, while each unbalanced cycle has odd number of intersection vertices.

We call a block cycle in a cycle-tree to be an end-block cycle if it has exactly one
intersection vertex. The name cycle-tree is justified as follows: if one converts each
block cycle C; into a vertex, each common intersection vertex of two block cycles
into an edge adjacent with the two vertices converted from the two block cycles,
and keep each block path P; connecting two vertices converted from the two block
cycles connected by P;, then the graph so obtained is indeed a tree.

An orientation e on a cycle-tree T' is called a direction if (T, e7) has neither sink
nor source, and for each block cycle C, the restriction (C,er) has either a sink or
a source at each cut-point of T"on C'. We shall see that T" admits a direction if and
only if T satisfies the Parity Condition, and the direction is unique up to opposite
sign. An Eulerian cycle-tree T" with a direction e is called a directed Eulerian
cycle-tree (T, er). For instance, the oriented signed graph given in Figure 3 is an
Eulerian cycle-tree with a direction.

F1GURE 3. An Eulerian cycle-tree and its direction.

Let T' = {C;, P;} be an Eulerian cycle-tree of ¥.. The indicator of T, denoted
Is7y, is a function It : E — Z defined by

1 if e belongs to block cycles,
Ir(e) =< 2 if e belongs to block paths, (1.12)
0 otherwise.

Given a direction er of T. Viewing both (X,e) and (T, er) as oriented signed
subgraphs of ¥, we have the coupling [e,e7]. The product function [e,er] - It
determines a vector in Z¥ and is an integral flow of (3,¢) by Theorem 3.4, called
the characteristic vector of the directed Eulerian cycle-tree (T,er) for (X, ¢).

An Eulerian cycle-tree is called a (signed-graphic) circuit if it does not contain
properly any Eulerian cycle-tree. We shall see that each circuit C' must be one of
the following three types.

e Type I: C consists of a single balanced cycle.
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o Type II: C consists of two edge-disjoint unbalanced cycles Cy,Cs and the
intersection C7 N Cs is a single vertex, written C' = C1C5.

o Type III: C consists of two vertex-disjoint unbalanced cycles Cp,Cs, and a
simple path P of positive length, such that C; N P is the initial vertex and
C5 N P the terminal vertex of P, written C' = C; PCs5.

The present definition of circuit looks different from that defined by Zaslavsky [15]
and that adopted in [5, 6], but they are equivalent. The following characterization
of signed-graphic circuits shows the motivation of the concept.

CHARACTERIZATION OF SIGNED-GRAPHIC CIRCUITS. Let f be a nonzero integral
flow of (3,¢e). Then the following statements are equivalent.

(a) f is elementary.
(b) f is the characteristic vector of a directed circuit.
(¢) There exists an elementary directed Eulerian walk (W, ew) such that

f = f(W,aw)'

Remark. The characterization of signed-graphic circuits was obtained by Bouchet
[4, p. 283] (Corollary 2.3), using Zaslavsky’s definition of circuits [15]. As Zaslavsky
pointed out himself, the central observation of [15, p. 53] is the existence of a
matroid over the edge set of a signed graph whose circuits are exactly those of
Types I, II, III. Bouchet [4] assumed (without argument) that Zaslavsky’s matroid
is the same as the matroid whose circuits are the supports of elementary flows.

Indeed, it is trivial to see that the circuits of the former are the circuits of
the latter. However, the converse is not so obvious that it needs no argument,
although it is anticipated. Corollary 3.6 implies that the converse is indeed true.
Now it is logically clear and aesthetically complete that the matroid constructed by
Zaslavsky [15] for a signed graph is the same matroid whose circuits are the supports
of elementary chains (= elementary flows) of the signed graph in the sense of Tutte
[14]; so are their dual matroids.

CLASSIFICATION OF CONFORMALLY INDECOMPOSABLE INTEGRAL FLows. Let f
be a nonzero integral flow of an oriented signed graph (X, ¢).

(a) Then f is conformally indecomposable if and only if supp f is an Eulerian
cycle-tree T and

f = [575f]'IT-

(b) If T is an Eulerian cycle-tree other than a circuit, then for each closed walk
W of minimum length that uses all edges of T, there is a decomposition

W = CoP,C, ... PoCiPyir, k> 1,

where C; are entire end-block cycles of T and C;P;11C;41 are circuits of Type 11T
with Cx41 = Cp, such that

k
1
IT - 5 Z IE(CT',P@'+1C¢+1)'

1=0

Here the half-integer phenomenon is similar to Corollary 1.4 of Geelen and
Guenin [8, p. 283] in spirit.
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2. FLow REDUCTION ALGORITHM

It is easy to see that the conformal decomposability of an integral flow f on
(X,¢) is equivalent to the conformal decomposability of the flow |f| on (X,ey); see
Lemma 8 of [7]. So without loss of generality, to decompose an integral flow, one
only needs to consider nonnegative nonzero integral flows of (3, ). The following
Flow Reduction Algorithm (FRA) finds explicitly a minimal directed Eulerian walk
from a given nonzero integral flow. To be self-contained, let us first state the
following lemma, saying that the characteristic vector of a directed closed positive
walk is an integral flow.

Lemma 2.1. Let (W,ew) be a directed closed walk. Then the function few, ey
defined by (1.10) is an integral flow of (X, ¢€).

Proof. See Lemma 4.2 of [5, p. 273] and Lemma 3 of [7]. O

Flow Reduction Algorithm (FRA). Given a nonzero integral flow f on (X, ¢).
STEP 0. Choose an edge x1 in supp f with end-vertices ug,uy. Initiate a half-
closed and half-open walk ugxy. Set W := upxy, and £ :=1. Go to STEP 1.

STEP 1. Ifug € W, go to STEP 2. If uy € W, say, ug = ug with the greatest
index 3 < £, go to STEP 3.

STEP 2. There exists an edge xyrq1 in supp f' other than xz,, where f' :=
[ = fow,e;), having end-vertices ug, ugy 1 such that €p(ug, ve1) = —€(ug, we). Set
W = Wupxes1 and £ := ¢+ 1. Return to STEP 1.
STEP 3. If ug repeats a vertex in W at time 3, say, u, = ug with a < f < ¢,
STOP. For the case €¢(ug,x¢) = —c¢(ug, 341), set
W .= UBTB41UBHT - - - Urg—1TUp. (21)
For the case €7(ug, x¢) = €y(ug, x541), set
W = UaTat1Uatl - - - Upg—1TolUy; (2.2)

see Figure 4(a). Then (W,ey) is a directed Eulerian walk. If ug does not repeat
any vertez in W before time 3, go to STEP 4.

STEP 4. If there exist repeated vertices uq,uy in W with o < 3 < vy such that
Uq = Uy, Stop. For the case €f(uy, x¢) = —c¢(ug, x541), set W to be of (2.1). For
the case €y(ug, x¢) = €(ug, x541), set

W = ugxaug—1 ... Uat1Tat1Ua(Usy ) Typ1Uy g1 - .. Up—1ZpUg; (2.3)

see Figure 4(b). Then (W, ey) is a directed Eulerian walk. Otherwise, go to STEP 5.
STEP 5. If ef(ue,x¢) = —ey(ug,zg41), STOP. Set W to be of (2.1). Then
(W,e5) is a directed Eulerian walk. If ¢ (u¢, x¢) = €¢(ug, xg41), return to STEP 2.

Let W be a dynamic walk obtained by FRA. It is clear from STEP 3 that the
multiplicity of each vertex of W is at most two. So W has only possible double
vertices and possible double edges. At each double vertex of W, say u, = ug with
a < (3, STEP 5 implies that

e(ug,x3) = ew (Uas Tat1) = —ew (Ua, Ta) = —ew (Ug, Ta41)- (2.4)

This means that (W, ew ) is a directed Eulerian walk when FRA stops. It is pos-
sible that (ug,zg41) = (Ua,Za); if so, the repeated edges x4, 2341 have the same
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<UB—1 Xs Us Xgu1Ugoy

(b)

FIGURE 4. Two directed Eulerian walks found by FRA

orientation in (W,ew ). See Figure 2 for four possible patterns. STEP 4 implies
that each double vertex of W must be a cut-point of £(W).

In STEP 2, either wy ¢ W or uy = ug with e¢(u¢,2¢) = €f(ug,2341), both
functions fw, f’ are not flows. In fact, 0fw, <) (ue) = e (ug, z¢) # 0 and Of' (ue) =
—ef(ug,z¢) # 0. This means that there exists an edge x,y1 in supp f at u, such
that e¢(ug, x¢41) = —ef(ug,x¢). Then the length of W increases one and the
cardinality of the multiset (F,|f|) decreases one. Continue this procedure, FRA
stops with a directed closed walk (W, ey), for |f] is finite.

Lemma 2.2. Let W be a directed walk. Then FRA finds no directed closed positive
walk along W if and only if FRA finds no directed closed positive walk along W1,

Proof. Tt seems to be quite obvious. In fact, let FRA find a directed closed positive
walk along W. Then W contains one of the three patterns of closed walks in
Figure 5 with a < S < v < §:

(a) ew (ug, z5) = —ew (Ua, Tat1);

(b) ew (ug, w3) = ew (ta, Ta+1), Ew (Uy, Ty) = —ew (Ua, Ta+1);

(c) ew (uy, 7y) = ew (Ua, Tat1), ew (us, Ts) = ew (ug, Tp41)-
The reversals of patterns (a), (b) and (c), as subwalks in W~1, have the same
patterns as (a), (b) and (c) respectively. The subwalks from u, to ug in (a), (b),
(c¢) may contain some double vertices and double edges; so do the subwalks from
ug to u, in (b) and (c); and so does the subwalk from ., to us in (c).

Usr
Y Xas1
Us Uy U
Xg X5
uﬁ-l Us-1

(c)
FIGURE 5. Three patterns that FRA stops.

Note that when FRA is applied to W, the algorithm may stop and find a directed
closed positive walk before it reaches ug in (a), or before it reaches u., in (b), or
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before it reaches us in (c). If so, when FRA is applied to W1, the algorithm stops
and finds a directed closed positive walk along W ! before it reaches us-1, or Uy—1,
or ug-1, Or Uy-1. If not, when FRA is applied to W1, the algorithm stops and
finds a directed closed positive walk when it reaches u,-1. This means that FRA
finds a directed closed positive walk along W 1.

Conversely, let FRA find a directed closed positive walk along W~!. Then FRA
finds a directed closed positive walk along the walk (W ~1)~! which is W. (]

Lemma 2.3. Let (W,ew) be a directed midway-back avoided walk. Then

(a) The walk W has only possible double vertices, that is, the multiplicity of
each vertex and of each edge in W is at most two.

(b) The direction ey has the same orientation on repeated edges of W.

(¢) If W is a closed positive walk, then (W,ew) is a directed Eulerian walk.

Proof. Write W = ugzi1u122 ... Up_1TpUy.
(a) Suppose there is a vertex appeared three times in W, say, uqa = ug = u,
with o < 8 < ; see Figure 6. Since (W, ey) is midway-back avoided, we have

u(:(—lxu uq Uy Xq+l um+l

FIGURE 6. The pattern of a triple point.

EW(uﬁ7xﬁ) = EW(uavq;OH»l)v

EW(U’Wx’)’) = €W('UJ571'/3+1),

Ew (Uy, Ty) = ew (Uas Tat1)-
Then

ew (Uy, Ty) = —ew (ug, T5) = —ew (Ua, Tat1) = —Ew (Uy, T+ ),
which is a contradiction.
(b) Let uo = ug with a < § and let 541 (= z) be a repeated edge. Then
UB41 = Uq—1. Suppose ey (ug, £a+1) = —ew (Ua, To). Then
ew (Ug4+1,23+41) = —€w (Ua—1,Ta)-

This means that (IW,ey ) is midway-back at un—1, which is a contradiction. So
ew(ug, zg+1) = ew (Ua, o). This means that ey has the same orientation on
repeated edges of W.

(c) It follows from (1.8) that ey (un,zn) = —ew (ug,z1). Hence (W ew) is a
directed Eulerian walk by (b). O

Lemma 2.4. Let (W,ey) be a directed closed positive walk found by FRA. Then
(a) (W,ey) is a midway-back avoided walk.
(b) Each double vertex in W is a cut-point of S(W).
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Proof. (a) The directed walk (W, e ) satisfies (2.4). By definition (W, &) is midway-
back avoided.

(b) Assume that FRA stops at time ¢ and finds a directed closed walk (W,ey),
but did not stop before £. The format of W in the forms (2.1) and (2.2) have the
same pattern of increasing indices. However, the format of W in the form (2.3) is
special; its indices from ug to u, decrease. We may reduce the format of W in the
form (2.3) to the form whose indices increase as follows.

Consider the directed walk (W', ey), where W' = W, W5,

Wi = UaTat1Uat1 - - UBTE1UBL] « - » Uy 1Ty Uy,

Wo = Uy Typ1Unyg 1 -+ - Up—1TpUg, Uy = Ug, Up = UG.

Applying FRA to W;Ws,, the algorithm cannot stop before time ¢, but stops at
time ¢ and finds the directed closed positive walk W. Of course, FRA finds no
directed closed positive walk along W;. Writing W~ !in increasing-order of indices
and applying FRA to Wfl, by Lemma 2.2 the algorithm finds no directed closed
walk along W; ', Now applying FRA to W, W, the algorithm cannot stop before
time ¢, but stops at time ¢ and finds the same directed closed walk W, having
indices in increasing-order.

Without loss of generality we may assume that (W,ef) (obtained by FRA) has
the form

W = ugr1uiTs . .. Up_1TpUp, Uy = Ugp. (2.5)

Suppose W has a double vertex u that is not a cut-point of £(W), say, u = us = u,
with § < 7. Remove the vertex u from X(W). Since u is a double vertex, X(W)~{u}
is the union of two open walks

TE41USH1 - - - Up—1Tyys Ty 1 Unp1 - - - Up—1ZoUp(UQ)T1UT - . . Us—1T5.

Since v is not a cut-point, the two open walks must intersect at a vertex, say,

uu+l u)—l
Uy
X
ur]—l X1 Uq+1

FIGURE 7. A double vertex that is not a cut-point.

U, = Uy, where § < p < n and either n < v or v < 6. With the indices modulo /,
the closed walk W can be written as the form (see Figure 7)

W = UsTsp1Us41 -+ TpUpTpsl - o TylnTypl - TpUp Tyl - .- US—1T5US-

Consider the case § < u <n < wv. If v < ¢, FRA stops in STEP 4 at time v and
finds the directed closed positive walk

UpLpUp—1 - - UsH1Z541U6 (Un) Ty 1 U4 1 - - - Up—1 Ly Uy
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in Figure 7; this is a contradiction. If v = ¢, then u,z,41u,41 = upxiu1, FRA
stops in STEP 4 at time 7 and finds the directed closed positive walk

Up Ty 1 Uyt - - - US—1L5US (U ) TypUn—1 - - Up 1 Ty 1 Uy

in Figure 7; this is a contradiction. For the case v < § < u < 7, it is analogous to
the case d < p < n < v. O

Theorem 2.5. Let (W,ew) be a directed closed positive walk such that

(i) (W,ew) is a directed midway-back avoided walk;
(ii) each double vertex in W is a cut-point of S(W).

Then X(W) is an Eulerian cycle-tree, the restriction of ew to (W) is a direction
on the cycle-tree, and W uses each edge of block cycles once and each edge of block
paths twice, crossing from one block to the other block at each cut-vertex.

Proof. Lemma 2.3 implies that W has only possible double vertices and possible
double edges. Since every double vertex of W is a cut-point of X(W), then the
connected components of the signed subgraph induced by double edges of W are
simple paths (of possible zero length), called double-edge paths of L(W). Remove
the internal part of each double-edge path of positive length from (W), we obtain
an Eulerian graph whose vertex degrees are either 2 or 4. The Eulerian graph
can be decomposed into edge-disjoint cycles, called block cycles. Each double-edge
path (of possible zero length) connects exactly two block cycles. Since Z(W) is
connected and each double vertex of W is a cut-point of X(W), it follows that
3(W) is a cycle-tree.

It is clear that W uses each edge of block cycles once and each edge of block
paths twice, and crosses from one block to the other block at each cut-vertex.
Since (W, ew ) is midway-back avoided, Lemma 2.3(b) implies that ey has the
same orientation on repeated edges of W. So ey is a direction on the cycle-tree
Y(W). Now Theorem 3.2 implies that (W) satisfies the Parity Condition. Hence
3(W) is an Eulerian cycle-tree. O

Corollary 2.6. Let (W,es) be a directed closed walk found by FRA. Then (W)
is an Eulerian cycle-tree with direction €5, and W uses each edge of block cycles
once and each edge of block paths twice, crossing from one block to the other block
at each cut-vertex.

Proof. 1t follows from Lemma 2.4 and Theorem 2.5. ]

Theorem 2.7 (Flow Reduction Theorem). Let f be a nonzero integral flow of
(X,e). Then there exist minimal directed Eulerian walks (Wi, ef) and Eulerian
cycle-trees T; = (W) such that f can be conformally decomposed into

F=Y fowviey = legfl - In, (2.6)

where fay, <,y are given by (1.10) and I, by (1.12).
Furthermore, if f is conformally indecomposable, then there exists a minimal
directed Eulerian walk (W,ef) and an Eulerian cycle-tree T = (W) such that

f= f(W,Ef) = [€7€f] . (27)

Proof. Consider the nonnegative integral flow | f| of (X, &), where e is defined by
(1.11). Let X(f) denote the signed subgraph induced by the edge subset supp f.
Then FRA finds a directed Eulerian walk (IW3,ey) on the oriented signed graph
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(2(f),e5), such that fy, <|f|, where fuw, is given by (1.10) with ¢ = ¢5. Corol-
lary 2.6 implies that X(W7) is an Eulerian cycle-tree T7, and Theorem 3.5 implies
that W; is a minimal Eulerian walk. Then Theorem 3.4 implies fyw, = I, the
indicator function of T} defined by (1.12).

If f1 :=|f|— fw, # 0, then FRA finds a minimal directed Eulerian walk (W2, ¢y)
on (X(f1),ey), such that fw, <|f| — fw, and fw, = Ir,, where T, is the Eulerian
cycle-tree 3(W5). Likewise, if fo := | f| — fw, — fw, # 0, then FRA finds a minimal
directed Eulerian walk (W3, ) on (X(f2),e¢), such that fw, < |f|— fw, — fw, and
fws = Ir,, where Tj is the Eulerian cycle-tree 3(W3). Continue this procedure, we
obtain minimal directed Eulerian walks

(lesf)v (W275f)7 ) (Wkasf)

on (X(f),er), such that |f| = Ele fw, = Zle Iy, where T; are the Eulerian
cycle-trees X(W;) and fw, = I1,. Note that

f = [gagf] : |f|a f(Wi,af) = [€7€f]'fWi'

We obtain f = Zle fwi e = Zle[{—:,af] .
If f is conformally indecomposable, by definition we must have k = 1. O

3. CHARACTERIZATIONS OF EULERIAN CYCLE-TREES

This section is to establish properties satisfied by Eulerian cycle-trees such as the
Existence and Uniqueness of Direction, the Minimality, and the Half-Integer Scale
Decomposition. These results are interesting and important for their own right;
some of them have been used in Section 2. Furthermore, we shall see the equiva-
lence of conformally indecomposable flows, minimal Eulerian walks, and Fulerian
cycle-trees. The byproduct is the equivalence of circuits, elementary flows, and
elementary Eulerian walks, and the classification of circuits.

Let T = {C;, P;} be a cycle-tree with block cycles C; and block paths P; through-
out. We choose a block cycle Cy and write it as a closed walk

W() = UT1UITY ... U1 XU, U] = UQ- (31)

If T has two or more block cycles, we require Cj to be an end-block cycle, having ug
as its unique intersection vertex. Let P be the block path (of possible zero length)
from the vertex ug on Cj to a vertex wg on another block cycle C;. We write

P = voy1v192 . . . Um—1YmUm, Vo = UQ, Vm = WQ. (3.2)
Remove the cycle Cy and the internal part P° of the path P, we obtain a cycle-tree
T1 =T\ (C()UPO), (33)

which has one fewer block cycle than 7. Choose an edge z; on C; incident with wq
and switch the sign of 21, we obtain a cycle-tree Ty. If T' is Eulerian, so is Ty, for
the block cycle C has one fewer intersection vertex in 7] than in 7. This procedure
will be recalled in the proof of Lemma 3.1 and Theorem 3.2.

Lemma 3.1. Let T be a cycle-tree. Then there exists a closed walk W on T that
uses each edge of block cycles once and each edge of block paths twice, and crosses
from one block to the other block at each cut-vertex.

Moreover, each such W is a closed walk of minimum length that uses all edges
of T, and vice versa.



INDECOMPOSABLE INTEGRAL FLOWS ON SIGNED GRAPHS 13

Proof. If T has only one block cycle, then T is the cycle Cy and can be written as
a closed walk in (3.1). If T" has two or more block cycles, then by induction there
is a closed walk W7 on T3 in (3.3) such that Wy crosses from one block to the other
block at each intersection vertex. Then W = CoPW;P~! is the required closed
walk on T'; see Figure 8. The minimality of length is trivial. The part of vice versa
is also trivial. d

F1GURE 8. End-block cycle of a cycle-tree T'.

Theorem 3.2 (Existence and Uniqueness of Direction on Eulerian Cycle-Tree).
Let T be a cycle-tree. Then T satisfies the Parity Condition if and only if there
exists a (unique) direction er on T (up to opposite sign).

Proof. “=": We proceed by induction on the number of block cycles of T. When T
has only one block cycle, then T is a cycle itself, and the cycle has to be balanced.
It is clear that a balanced cycle has a unique direction up to opposite sign.

Assume that T has two or more block cycles. Then Tj in (3.3) is a cycle-tree
having one fewer block cycle than T'. Switch the sign of the edge z1 in T3, we obtain
an Eulerian cycle-tree Ty. By induction there exists a unique direction ey (up to
opposite sign) on T7. Let us switch the sign of z; in T} back to the sign of z; in T}
and define an orientation er, on T by setting ey, = ey for all vertex-edge pairs
except

e, (wo, 21) = —E€Ty (wo, 21).

Then (Cy,eq,) has either a sink or a source at wg. Let ep be a direction on P
such that ep(vm,ym) = —en (wo,21), and ey, be a direction on Wy such that
ew, (ur, ¢1) = —ep(vo, y1). Then the joint orientation ey, Vep Ve, gives rise to a
direction €7 on T'; see Figure 8.

Let 7 be an arbitrary direction on 7. Then e7. induces directions e}y, , €'p, EIT{

on Wy, P, T| respectively, where

EITI/(U}le) = —€’T(w0721)a
EIP(Um7ym) = _‘ET(U)O?Zn)’
ew, (ur, 1) = —ep(vo, y1)-

Then by induction we have that E’Tl, tery. It follows that ¢, = +ep and

5?/1/0 = tew,. Hence €. = tep; see Figure 8. This shows that the direction ep is
unique up to opposite sign.

“«<": Again, we proceed by induction on the number of block cycles. Given a
direction ey of T. By Lemma 3.1 there exists a closed walk W on T that uses
each edge of block cycles once and each edge of block paths twice. Then (W, er)
is a directed Eulerian walk by definition of direction on 7. If T" has only one block
cycle C, then T = C and it is trivially true, for the cycle C' has zero number of
intersection vertices and is balanced by (1.8).
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Assume that T has two or more block cycles. Let (W7, ew, ) be the restriction of
(W,ew) to Ty in (3.3). Then (W1,ew,) is a directed walk, having either a sink or
a source at wg. Switch the sign of the edge z; in T' and its orientation at wy. We
obtain a directed Eulerian walk (W7, e, ) on T7 that uses each edge of block cycles
once and each edge of block paths twice. By induction all block cycles of T} satisfy
the Parity Condition. Thus all block cycles of T other than C; satisfies the Parity
Condition. Let us switch the sign of z; in 7] back to the sign of z; in T. Since C4
has one fewer intersection vertex in 7] than that in 7', we see that C; satisfies the
Parity Condition in T'. Since (Cy,er) has either a sink or a source at uy, it forces
that Cy is unbalanced. Hence Cj also satisfies the Parity Condition. O

Lemma 3.3. Let W be a minimal Eulerian walk with a direction eyy. Then
(a) (W,ew) is midway-back avoided.
(b) Each double vertex in W is a cut-point of Z(W).

Proof. (a) Let W be written as
W = UpT1Uq - - - Ua—1TalUe - - - UB—1TRUSZ - - - Ug—1TpUp, Uy = U,
with u, = ug, where 0 < o < 8 < 0. If ew(ug,zg) = —ew (va, Tat1), then
(W' ew) is a directed Eulerian walk, where
W' = UaTat1Uatl - - - Us—1T5Ug,

and W’ is properly contained in W as multisets, which contradicts the minimality
of (W,ew). Then we must have ew (ug,23) = ew(ta,ZTa+1). This means that
(W, ew) is midway-back avoided.

(b) The proof is similar to that of Lemma 2.4(b). Note that W has only possible
double vertices and possible double edges. Let u = us = u, be a double vertex of
W with indices § < n. Remove u from X(W). Then 3(W) \ {u} is the union of
two open walks

L1 USHILS42 " Typ—1Un—1Ty, Tn+1Unp1Ty42 - - L5—1US-1T5-
Suppose u is not a cut-point of X(W). Then the two open walks must intersect,
say, at the vertex u, = u, with indices § < p < 1 < v; see Figure 7. Since (W, ew)
is midway-back avoided, we have
5W(un> xn) = Ew(u(s, l‘5+1), 6W(U'Vv l‘,,) = €W(u;u xu-‘rl)'

Since (W, ew) is directed, we futher have

ew (us, v5) = ew (U, Tnt1),  ew (U, Tu) = ew (U, Tyy1).
We see that (W1, ew) and (Wa,ew ), where

Wi = UsTs41Us41 - - - Up— 1Ly (Up) )Ty Uy 1 « . Uy 1 Ty 1 Uy

Wo = Uun@nn—1 ... Up 12418 (Up ) Ty 1 Up i1 - - - Us—1T5Us5,
are directed closed positive walks, and are contained properly in (W, ey/) as multi-
sets. This is contradictory to the minimality of (W, ey ). O

Theorem 3.4 (Characterization of Minimal Eulerian Walk). Let W be a minimal
Eulerian walk with a direction ey . Then X(W) is an Eulerian cycle-tree T, W
uses each edge of block cycles once and each edge of block paths twice of T', and ey
induces a direction er on T. Moreover,

fow,ew) = le,e7] - Ir. (3.4)
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Proof. Tt follows from Lemma 3.3 and Theorem 2.5 that X(W) is an Eulerian cycle-
tree. Since ey (u, z) = er(u, ) for vertex-edge pairs (u,z) on T, the identity (3.4)
follows immediately from definitions of f,c,,) by (1.10) and Iz by (1.12). O

Theorem 3.5 (Minimality of Eulerian Cycle-Tree). Let T be an FEulerian cycle-
tree with a direction er. Then T is minimal in the sense that if Ty is an Eulerian
cycle-tree contained in T and block paths of Ty are block paths of T then Ty =T.
Moreover, if W is a closed walk on T that uses each edge of block cycles once and
each edge of block paths twice, then (W,er) is a minimal directed Eulerian walk.
In particular, each directed closed positive walk found by FRA is a minimal
directed Eulerian walk.

Proof. Suppose there is an Eulerian cycle-tree T7 contained properly in 7', such
that all block paths of T7 are block paths of T. Then there exists an edge e €
E(T)\ E(T1), having an end-vertex v on a block cycle C of T;. The vertex v must
be an intersection vertex in 7" but not an intersection vertex in 77. Let ey, ez be
two edges (could be an identical loop) on C, having a common end-vertex v. Then
er(v,e1) = —er(v,e2) in T and ep(v,e1) = ep(v,e2) in T. This is a contradiction.

Let W be a required closed walk on T'. Then (W, er) is a directed Eulerian walk
by Lemma 3.1 and by definition of . Let W7 be a minimal Eulerian walk on
T, contained in W as multisets. Then T3 = X(W;) is contained in 7 and is an
Eulerian cycle-tree by Theorem 3.4. Clearly, all block cycles of T are block cycles
of T'. Since edges of block paths of T" are double edges in W, edges of block paths
of T1 are double edges in W7, and double edges in W, are double edges in W, it
follows that all block paths of T7 are block paths of T. Thus T} = T by the first
part of the theorem. Therefore M (W7) = M (W); this means that W is a minimal
Eulerian walk on T'.

The last part follows from Corollary 2.6. 0

Corollary 3.6 (Characterization and Classification of Circuits). Let (W, ew) be a
minimal directed Eulerian walk. Then the following statements are equivalent.

(a) (W,ew) is elementary.

(b) f(w, ew) is elementary.

(¢) (W) is a circuit.

Moreover, circuits are classified into Types I, 11, I11.

Proof. (a) = (b): Suppose f(w, e, ) is not elementary, that is, there is a flow g
such that suppg C supp fow, ey, ). We may require ¥(suppg) to be connected.
By Lemma 2.1 there exists a directed closed positive walk (W7,e,) on X(supp g)
such that ¢ = fw, e,). Since supp W1 = suppg and supp fw, ) = supp W,
then supp Wy C supp W. Thus (W, ew ) is not elementary by definition, which is
contradictory to (a).

(a) <= (b): Suppose (W,ew ) is not elementary, that is, there exists a minimal
directed Eulerian walk (W7, ew,) such that supp Wy C supp W. Since supp Wy =
Supp f(w;, ey, ) and supp W = supp fw,cy,), then supp fiw, e, ) & SUPP f(w,en)-
Thus fw, e, ) is not elementary by definition, which is contradictory to (b).

(a) = (c): Suppose (W) is not a circuit, that is, there exists an Eulerian
cycle-tree Ty contained properly in 3(W). Let e, be a direction on Ty, and W; a
closed walk that uses each edge of block cycles once and each edge of block paths
twice of Ty. Then (Wi,eq,) is a minimal directed Eulerian walk by Theorem 3.5
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and supp W1 C supp W. Thus (W, ey ) is not elementary by definition, which is
contradictory to (c).

(a) < (c): Suppose (W, ew) is not elementary, that is, there exists a minimal
directed Eulerian walk (W7,ew,) such that supp W7 € supp W. Then X(W7) is
an Eulerian cycle-tree by Theorem 3.4 and is properly contained in 3(W). Thus
(W) is not a circuit by deinition, which is contradictory to (a).

Now an Eulerian cycle-tree T" be further a circuit. Then T contains at most one
block path (of possible zero length). Otherwise, suppose there are two or more
block paths in T, then one block path together with its two block cycles form an
Eulerian cycle-tree, which is properly contained in T'; this means that 7T is not a
circuit, a contradiction. If there is no block path in 7T, then T" must be a single
balanced cycle, which is a circuit of Type L.

If T' contains exactly one block path, the length of the block path is either zero or
positive. In the case of zero length for the block path, T" consists of two block cycles
having a common vertex, which is a circuit of Type II. In the case of positive length
for the block path, T consists of two block cycles and the block path connecting
them, which is a circuit of Type III. O

Theorem 3.7 (Half-Integer Scale Decomposition). Let T be an Eulerian cycle-tree
with a direction ep. Let W be a closed walk on T that uses each edge of block cycles
once and each edge of block paths twice. If T' is not a circuit, then W can be divided
into the form
W =CoP,C1 Py - PoCpPri1, k>1, (3.5)
satisfying the following four conditions:
(i) {C;} is the collection of all end-block cycles of T and P; are simple open
paths of positive lengths.
(ii) Each edge of non-end-block cycles appears in exactly one of the paths P;,
and each edge of block paths appears in exactly two of the paths P;.
(iil) Each (C;Pi11Civ1,er) (0 < i < k) is a directed circuit of Type IIT with
Cry1 = Co.
(iv) Half-integer scale decomposition

k

1
Iy = 5 ; I5(CiPisrCiir)- (3.6)

Proof. We proceed by induction on the number of block paths of T', including those
of zero length. If T" does not contain block path, then T is a circuit of Types I. If T
contains exactly one block path of zero length, then T is a circuit of Type II. If T
contains exactly one block path of positive length, then T is a circuit of Type III.

Q

Q

FI1GURE 9. An Eulerian cycle-tree with two block paths.
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When T has exactly two block paths (of possible zero length), then T has the
form in Figure 9. Since W crosses each cut-vertex from one block to the other block,
then W can be written as W = CyP,C1 P>, where P, = PQ1Q, P, = Q’lQ;P*l.
Then CyP,C1,C P2Cy are circuits of Type III. We thus have the decomposition

1
Iy = gfz(coplcl) + §Iz(clp200)-

When T has three or more block paths (of possible zero length), choose an end-
block cycle C' and a block path P (of possible zero length) having its initial vertex
u on C and its terminal vertex v on another block cycle C’. Since T has at least
three block paths, the cycle C’ cannot be a loop; so all edges of C’ are not loops.
Choose an edge = on C’ at v, change the sign of z, and remove the cycle C' and the
internal part of P from T. We obtain an Eulerian cycle-tree T”; see Figures 10 and
11. Then W can be written as W = CPW’'P~!, where W’ is a closed walk on T’
that uses each edge of block cycles once and each edge of block paths twice. Thus
(W' ers) is a minimal Eulerian walk, where e is a direction of 7" and ep = e
except e (v,2) = —er(v,x). By induction W’ can be written as

W' = CPICIPL - PLOLPL,,

satisfying the conditions (i)—(iv). There are two cases: C’ is either an end-block
cycle of T”, or C’ is not an end-block cycle of T".

In the case that C” is an end-block cycle of 7", we may assume Cj, = C’, having
its unique intersection vertex at w in 7”. Let us write C” as a closed path C;, = P'Q’,
where P’ is a path from v to w on C’ and @’ is the other path from w to v on C’.
Note that P, is a path whose terminal vertex is w, and P, is a path whose initial
vertex is w; see Figure 10. Set C; =C{ (0<i<k—-1), P, =P/ (1<i<k-1),

Ijk+ 1
P

FiGURE 10. C’ has two intersection vertices.

and
P, = Péleil, C,=0C, Py = PPIPIQ_,'_l.
Then W = CyP,C1 P -+ - PrCyPy41 is a closed walk on T" with direction ep, satis-
fying the conditions (i)—(iv).
In the case that C’ is not an end-block cycle of 7", we may assume that P,
contains the vertex v and the edge . Let us write P, = P'Q’, where P’ is a path

whose terminal vertex is v and )’ is a path whose initial vertex is v; see Figure 11.
Set C; =C] (0<i<k),P,=P (1<i<k),and

Pey1=P' Pl Crpi=C, Puo=PQ.

Then W = CyPiC1Ps - Ppy1Ck11Piy2 is a closed walk on T with direction er,
satisfying the conditions (i)—(iv). O
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Q ,
I:>k+ 1

P’ I:>I'<+ 1

FIGURE 11. C’ has more than two intersection vertices.

Problem. An Eulerian cycle-tree is said to be bridgeless if it does not contain block
paths of positive length. The indicator function of a bridgeless Eulerian cycle-tree
has constant value 1 on its support. It should be interesting to consider integral
flows f such that ¥(f) is connected and has no bridges; we will call such integral
flows as bridgeless flows. A bridgeless flow f is said to be bridgeless decomposable if
there exist nonzero bridgeless flows f1, fo such that f = f; + fo, where f; have the
same sign, that is, f1 - fo > 0. It would be interesting to classify bridgeless inde-
composable flows, that is, the integral flows that are not bridgeless decomposable.
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